
1 

文章所属专业委员会领域：城市与区域经济 

The Impacts of Smart City Construction on Carbon Total 

Factor Productivity: Empirical Evidence from China 

Abstract: Today, low-carbon development and smart city pilots are prevalent. 

Against this backdrop, an urgent need exists to clarify the impact of smart city 

construction (SCC) on low-carbon development. However, studies on the low-

carbon development effects of SCC remain scarce. Therefore, this in-depth study 

focuses on China, the world’s largest developing country, to examine the role of 

SCC in promoting low-carbon development. First, we calculate the carbon total 

factor productivity (CTFP) of 182 prefecture-level cities in China using the slacks-

based global Malmquist–Luenberger index. Second, to empirically examine the 

impact of SCC on CTFP, we employ a multi-period difference-in-difference (DID) 

model and a machine learning–based propensity-score matching DID (PSM-DID) 

model. The results reveal that SCC significantly enhances CTFP and low-carbon 

technological efficiency, while its impact on low-carbon technological progress is 

nonsignificant. Mechanism tests indicate that SCC can improve CTFP through the 

following three channels: green technological innovation, industrial structure 

upgrading, and resource allocation. Heterogeneity tests indicate that all three 

batches of SCC improve CTFP, and that the positive effect of the third batch is 

greater than that of the first and second batches. Furthermore, the CTFP promotion 

effect of SCC is stronger in megacities and cities in the Central region. Finally, we 

propose relevant policy implications. 

Keywords: Smart city construction (SCC); carbon total factor productivity 

(CTFP); difference-in-difference (DID); machine learning PSM-DID; 

heterogeneity  
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Ⅰ Introduction 

Global warming has emerged as a formidable challenge facing human society, 

with carbon dioxide (CO2) emissions serving as the key influencing factor. As of 

May 2022, a total of 127 countries worldwide had either proposed or were 

preparing to articulate carbon neutrality goals.1 Under the constraints imposed by 

CO2 emission reduction, a prevailing global consensus has been reached regarding 

low-carbon development. Furthermore, the key to boosting economic low-carbon 

development lies in promoting carbon total factor productivity (CTFP). 

CTFP incorporates carbon emissions as an undesirable output into the 

measurement framework of total factor productivity (TFP), which actually gauges 

TFP under CO2 emission constraints (Wang et al., 2022). In contrast to traditional 

TFP assessments, CTFP offers a more objective evaluation of economic growth 

performance under carbon emission constraints, with its magnitude being closely 

linked to the prospects of economic sustainability. 

As the world’s largest developing country, China faces an increasingly severe 

carbon emissions challenge. From 2000 to 2021, energy-related CO2 emissions 

surged from 3.328 to 10.523 billion tons, with an average annual growth rate of 

5.64%.2 As the largest emitter of CO2, China has committed to reaching its carbon 

peak by 2030 and carbon neutrality by 2060. To accomplish this dual carbon goal 

while ensuring stable economic growth, China must urgently enhance its CTFP. 

As urbanization advances, cities have emerged as crucial vehicles for economic 

growth and carbon emissions as well as drivers of low-carbon development in all 

countries (Dong et al., 2022). Against this backdrop, the concept of smart city 

construction (SCC) has arisen. Many developed countries have taken the lead in 

 

1
 Data source: https://www.cikd.org/detail?docId=1538692320059240449. 

2
 Data source: BP statistical review of world energy 2022. 
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formulating SCC policy, where a strong emphasis is placed on not only overall 

economic growth but also energy conservation, environmental improvement, and 

the promotion of sustainable economic development. For instance, in European 

countries, 33% of SCC programs prioritize green ecology in their construction 

endeavors (Beretta, 2018). 

Similar to the global trend, China is also promoting low-carbon development 

through SCC. The country first proposed the National Smart City Pilot Program in 

2009 and subsequently released lists of pilot cities in three batches. As of the time 

of writing, over 700 Chinese cities are either planning or actively constructing smart 

cities. SCC effectively alleviates the conflict between CO2 emissions and economic 

growth, thus promoting CTFP. First, SCC facilitates the accelerated application of 

information and communication technologies (ICTs), such as the Internet, big data, 

and artificial intelligence; optimizes resource allocation (Chu et al., 2021); and 

improves energy efficiency and other factors (Weber and Cabras, 2017), thereby 

boosting CTFP. Moreover, SCC contributes to knowledge spillovers (Delitheou et 

al., 2019), rapid green technological innovation, and CTFP enhancement. 

Furthermore, smart cities optimize industrial structures and propel low-carbon 

growth (Wang et al., 2022). However, existing research on the impact of SCC on 

CTFP is scarce. Therefore, the present study seeks to fill this research gap. 

Specifically, this study aims to investigate the impact of SCC on CTFP. We first 

employ the slacks-based measure and global Malmquist–Luenberger (SBM-GML) 

index to calculate CTFP for 182 cities in China from 2007 to 2018. Then, we use a 

multi-period difference-in-difference (DID) model and a machine learning–based 

propensity-score matching DID (PSM-DID) model to empirically examine the 

effect of smart city pilot construction on CTFP. The research findings from the 

multi-period DID model demonstrate a significant positive effect of SCC on CTFP. 

Moreover, regression results for the decompositions of CTFP reveal that SCC 

improves low-carbon technological efficiency; however, its impact on low-carbon 
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technological progress is nonsignificant. Mechanism tests indicate that SCC can 

boost CTFP by promoting green technological innovation, upgrading industrial 

structures, and optimizing resource allocation. Furthermore, heterogeneity tests 

demonstrate significant city-level heterogeneities in the impact of SCC on CTFP. 

This study holds crucial significance for the global community, particularly 

developing countries, regarding the use of SCC to promote low-carbon 

development. 

The marginal contributions of this study are as follows: 

First, distinct from existing literature, which has focused on SCC’s impact on 

factors such as economic growth, productivity, carbon emissions, pollution 

emissions, and green TFP considering pollution emission constraints, this study 

focuses on CTFP under CO2 emission constraints. This focus enables a more 

accurate assessment of the impact of SCC on low-carbon development. 

Second, while existing literature has often used logit regression combined with 

nearest-neighbor matching for PSM, this study adopts a random forest model to 

obtain propensity scores. It further conducts model training to achieve more precise 

matching results, which enhance the reliability of the regression results through the 

selection of more accurate experimental and control groups. 

Third, while previous literature has primarily employed intermediate variables, 

such as technological innovation (Jiang et al., 2021), industrial structure (Wang et 

al., 2022), technological progress, and government subsidies (Liu et al., 2023) to 

examine the mechanism of SCC’s impact on economic development, this study 

adds resource allocation as an external mechanism variable. Thus, it provides a 

valuable supplement to the existing literature.  

Lastly, in contrast to the existing literature, which has mainly analyzed the 

economic and environmental effects of the first and second batches of smart city 

pilot projects (Xin and Qu, 2019; Jiang et al., 2021), this study investigates the 

heterogeneous impact of the first, second, and third batches of SCC on CTFP. 



5 

The remainder of the paper is structured as follows: Section 2 presents the 

literature review; Section 3 provides a theoretical analysis; Section 4 outlines the 

model, variables, and data; Section 5 interprets the regression results; and lastly, 

Section 5 presents the study’s conclusions and implications. 

Ⅱ Literature Review 

This section presents a review of the relevant literature. The literature relevant to 

the research topic can be categorized into the following two main groups: the effects 

of SCC and the measurement and driving factors of CTFP. 

Regarding the effects of SCC, existing studies have primarily focused on the 

economic and environmental effects of SCC (Song et al., 2022). In terms of 

economic effects, SCC exerts positive effects on economic equity (Lara et al., 2016), 

production efficiency (Peng et al., 2017), innovation (Caragliu and Del Bo, 2019), 

and economic growth (Visvizi et al., 2018; Sergi et al., 2019). It also drives regional 

employment, lowers production costs, and enhances urban development (Luo et al., 

2021; Min et al., 2022), thereby fostering high-quality development (Chen et al., 

2022). Concerning environmental effects, SCC promotes energy efficiency (Yu and 

Zhong, 2019), accelerates resource recycling (Liu et al., 2023), and reduces 

emissions of pollutants, such as CO2 (Yigitcanlar and Kamruzzaman, 2018; Qian 

et al., 2023), haze (Feng and Hu, 2022), SO2 (Shen et al., 2023), and NO2 (Chen, 

2023). To further clarify the impact of SCC on sustainable growth, studies have 

analyzed the effect of SCC on green TFP, which considers wastewater, SO2, and 

solid waste to be undesirable outputs (Jiang et al., 2021; Wang et al., 2022). 

Regarding the measurement and driving factors of CTFP, TFP has always been 

a key indicator in explaining economic growth (Solow, 1956). However, traditional 

TFP does not account for undesirable outputs and thus fails to assess true economic 

performance (Färe et al., 1989). Therefore, Chung et al. (1997) incorporate 
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environmental pollutants as undesirable outputs and construct the Malmquist–

Luenberger index to calculate environmental TFP under pollution emission 

constraints. This index, also known as green TFP, addresses the shortcomings of 

traditional TFP and has been widely used. 

As the issue of CO2 emissions has become increasingly prominent, academia has 

started to treat CO2 emissions as an undesirable output for measuring environmental 

TFP under CO2 emission constraints (Gao et al., 2021; Liu et al., 2021), which is 

also known as total factor carbon productivity (Bai et al., 2019; Du and Li, 2019; 

Lin et al., 2022) or CTFP (Wang et al., 2022). Moreover, studies have explored the 

impact of various factors on CTFP, such as technological innovation (Wang et al., 

2021; Wu et al., 2022), economic structure (Zhang and Lin, 2018), human capital 

(Wang et al., 2021), environmental regulations (Li et al., 2022), carbon trading (Yu 

et al., 2022), industrial intelligence (Wang et al., 2022), and green finance (Chen et 

al., 2023). 

Notably, however, existing literature has the following drawbacks: 

First, it has focused on analyzing the impact of SCC on economic growth, 

productivity, carbon emissions, pollutant emissions, energy efficiency, and green 

TFP under pollution emission constraints. However, scarce research has 

specifically studied the effect of SCC on CTFP, which means that the impact of 

SCC on low-carbon development cannot be accurately identified. 

Second, in the PSM process, most studies have used logit regression combined 

with nearest-neighbor matching. However, the flexibility of the matching process 

is insufficient and it fails to effectively address issues related to self-selection. 

Third, previous studies have primarily adopted factors such as technological 

innovation (Jiang et al., 2021), industrial structure (Wang et al., 2022), 

technological progress, and government subsidies (Liu et al., 2023) as mediating 

variables to explore the effects of SCC. Thus, they have neglected an analysis of 

other transmission mechanisms, such as resource allocation. 
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Fourth, the literature has mainly analyzed the economic and environmental 

effects of SCC from the second batch (Xin and Qu, 2019) and the first batch (Jiang 

et al., 2021). Doing so cannot reveal the differentiated impact of SCC on CTFP 

between different batches of SCC.  

Ⅲ Theoretical Analysis 

This section constitutes a theoretical analysis. Section 3.1 provides smart city 

policies across various countries, including China's smart city pilots. Section 3.2 

conducts the influencing mechanisms of SCC on CTFP. 

A. Policy background 

Since IBM proposed the concept of smart cities in 2008, SCC has attracted 

worldwide attention. SCC integrates artificial intelligence, big data, cloud 

computing, and other advanced ICTs across various sectors, including enterprise 

production, government governance, and residents’ daily lives. More specifically, 

through the incorporation of AI devices into infrastructure, transportation systems, 

pipelines, rivers, and natural environments, smart cities can constantly monitor 

their operational status in real time. They effectively analyze and integrate urban 

operational data, providing valuable feedback and decision-making support to city 

management departments. SCC represents a collective endeavor by governments 

worldwide to optimize urban operations and enhance management practices. 

Moreover, SCC has drawn significant attention in many countries. For instance, 

in 2005, the European Union initiated the “i2010” program, and in 2006 it launched 

the Smart Cities Network Building project. Following this, European countries 

have tailored smart city plans to suit their specific developmental goals. Notably, 

the United Kingdom launched the “Digital Britain” plan with the vision of 

transforming London into a digital capital. In Germany, SCC primarily revolves 
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around energy conservation and environmental protection, emphasizing the 

application of the Green City PPP construction model. Since 2000, Japan has 

expedited its ICT strategy, making strides in informatization through initiatives like 

“e-Japan,” “U-Japan,” and “I-Japan.” (Su et al., 2022). Similarly, Singapore has 

made significant progress with the implementation of its “Smart Nation 2015” plan. 

This involves effectively incorporating digital technologies into critical areas, such 

as e-governance, financial services, production and sales, and education and 

learning. In the United States, collaboration between IBM and Dubuque City has 

resulted in the digitization of public resources for addressing residents’ needs and 

societal challenges. These collective efforts demonstrate the global commitment to 

SCC and the use of digital technologies to enhance various aspects of urban life. 

In 2012, China issued the “Notice on the Launch of the National Smart City Pilot 

Work,” which explicitly recognized the vital role of SCC in advancing intelligent, 

eco-friendly, and low-carbon urbanization development. The first batch of smart 

cities, initiated in 2012, comprised 90 cities, counties, and districts. The second 

batch, initiated in 2013, comprised 83 cities and districts along with 20 counties 

and towns. Subsequently, in 2014, the third batch encompassed 13 counties and 

districts as well as 79 cities. In 2021, both the central and local governments in 

China emphasized the prioritization of SCC in the “14th Five-Year Plan” for future 

development. At present, over 700 cities in China are actively planning or 

undergoing SCC projects. Therefore, the significant contribution of SCC to China’s 

low-carbon development is becoming increasingly apparent. 

B. Influencing mechanism 

In essence, CTFP stands for TFP under the constraints of carbon emissions. 

Therefore, SCC can boost CTFP through the combined promotion of productivity 

growth and carbon emission reduction.  
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Regarding productivity growth, SCC facilitates the widespread adoption of ICT, 

which enhances the allocation efficiency of production factors (Xu and Yang, 2022), 

thereby ultimately promoting productivity. Furthermore, smart cities serve as 

attractive destinations for high-tech and foreign enterprises, thus fostering 

economies of scale that increase capacity utilization and expedite knowledge 

spillover effects. Consequently, efficiency and the technological level are increased 

and productivity is elevated. 

Concerning carbon emission reduction, SCC leverages ICT to conduct real-time 

monitoring of urban areas, which enables the precise implementation of 

environmentally friendly products and clean production technologies in the energy 

and manufacturing sectors. This fundamental integration improves resource use 

efficiency and fosters proactive measures against energy use and carbon emissions, 

thereby enhancing CO2 prevention and control measures in urban businesses. 

Additionally, SCC expedites the transition toward greener and more digitized 

practices, which significantly contribute to reduced carbon emissions (Ferrara, 

2015); ultimately, this propels low-carbon development. Thus, we propose the 

following hypothesis (H): 

H1: SCC promotes productivity growth and carbon reduction, leading to an 

overall improvement in CTFP. 

Moreover, SCC serves as a catalyst for the development of ICT applications and 

inclusive digital finance, which facilitate improved access to funding for enterprises 

and offer financial support for green technological innovations (Arora, 2018). 

Furthermore, the low-carbon goal of SCC must be supported by green technological 

innovations in green product design, green materials, and clean energy. This will 

provide broad application scenarios and market opportunities for green 

technological innovation, thus guiding the flow of capital to the field of green 

technological innovation. Such innovation plays a key role in enhancing production 

processes and improving the use efficiency of production factors, ultimately 
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increasing productivity. Moreover, green technological innovation in areas such as 

clean energy can accelerate the substitution of fossil fuels with clean energy as well 

as reduce carbon emissions, thus increasing CTFP. Accordingly, we propose the 

following hypothesis: 

H2: SCC enhances CTFP by promoting green technological innovation. 

In addition, SCC plays a pivotal role in expediting the adoption of new energy 

and information materials, which in turn propels the development of information-

based infrastructures and modern industries (e.g., the information, research and 

development [R&D], and design sectors). In effect, this fosters the flow of 

production factors across industries, reduces resource idleness, mitigates structural 

imbalances, and facilitates industrial structure upgrading. Noteworthily, the process 

of industrial structure upgrading yields “structural dividends” (Peneder, 2003), 

which drive the shift of production factors from less efficient sectors to more 

efficient ones, which leads to the improved use efficiency of energy and other 

factors as well as less carbon emissions, ultimately increasing CTFP. Accordingly 

we propose the following hypothesis: 

H3: SCC enhances CTFP by promoting industrial structure upgrading. 

Lastly, SCC can increase the efficiency of innovation, promote the precise 

application of low-carbon technologies (Xue et al., 2023), accelerate the flow of 

capital and labor in the factor market, alleviate factor mismatch, improve the 

efficiency of resource allocation (which can alleviate the contradiction between 

economic growth and carbon emissions), and promote low-carbon development. 

According, we propose the following hypothesis: 

H 4: SCC enhances CTFP through optimizing resource allocation. 

Based on the above analysis, Figure 1 illustrates the influencing mechanism of 

SCC on CTFP. 
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FIGURE 1 INFLUENCING MECHANISM OF SCC ON CTFP 

 

Ⅳ Research Design 

This section introduces model, variables and data. Section 4.1 constructs 

regression models. Section 4.2 and 4.3 describes variables and data, respectively. 

A. Model 

In 2012, China officially planned the first batch of smart city pilots, followed by 

the approval of the second and third batches in 2013 and 2014, respectively. This 

study considers the smart city pilot a quasi-natural experiment and uses the multi-

period DID method to assess the impact of SCC on CTFP. 

First, two dummy variables – treat and post – are constructed: treat = 1 represents 

smart cities, the treatment group, while treat = 0 represents non-smart cities, the 

control group. Furthermore, post denotes the policy shock, where post = 1 indicates 

the period after the implementation of a smart city pilot, while post = 0 indicates 

the period before the implementation. The coefficient of the interaction term, 

𝑑𝑖𝑑𝑖,𝑡 = 𝑡𝑟𝑒𝑎𝑡 × 𝑝𝑜𝑠𝑡, represents the impact of SCC on CTFP. 

During the selection of the experimental and control groups, cities that only 

implement policies at the district and county levels are excluded to avoid 

underestimating the carbon reduction effect. Cities with significant data gaps are 
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also excluded. Ultimately, the treatment and control groups comprise 77 and 105 

cities, respectively. 

The multi-period DID regression model is specified as follows: 

(1)         𝐶𝑇𝐹𝑃𝑖𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑎𝑡 × 𝑝𝑜𝑠𝑡 + 𝛴𝑖=1
𝑛 𝛾𝑖𝑋𝑖𝑡 + 𝑣𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡 

Furthermore, to address sample selection bias, this study employs machine 

learning for PSM. Subsequently, the PSM-DID method is used to tackle 

endogeneity problems and identify the policy treatment effect. The model is as 

follows: 

(2)       𝐶𝑇𝐹𝑃𝑖𝑡
𝑃𝑆𝑀 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑎𝑡 × 𝑝𝑜𝑠𝑡 + 𝛴𝑖=1

𝑛 𝛾𝑖𝑋𝑖𝑡 + 𝑣𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡 

where CTFP represents the CTFP, and its calculation process is detailed in the 

following section; X represents the control variables; 𝑣𝑡  denotes time-fixed effects; 

𝜇𝑖 represents city-fixed effects; and ε represents the disturbance term. 

Then, following Wang and Zhong (2023), we investigate the impact of SCC on 

the mediating variables to identify the mediating mechanism: 

(3)       𝑀𝑒𝑑𝑖,𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑎𝑡 × 𝑝𝑜𝑠𝑡 + 𝛴𝑖=1
𝑛 𝛾𝑖𝑋𝑖𝑡 + 𝑣𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡 

If  is significant, SCC can influence CTFP through the intermediate variables. 

B. Variables 

Dependent variable—CTFP is the dependent variable, and CO2 emissions are 

chosen as the undesirable output and incorporated into the environmental TFP 

calculation framework. The SBM directional distance function and GML index are 

used to calculate CTFP. 

Production possibility set: In this study, each city is treated as a decision-making 
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unit to construct the best practice frontier for all cities in each period. Each city is 

represented by N types of input factors 𝑥 = (𝑥1, … , 𝑥𝑁) ∈ 𝑅𝑁
+ to produce M types 

of “good” outputs 𝑦 = (𝑦1 … 𝑦𝑀) ∈ 𝑅𝑀
+  and I types of “bad” outputs 𝑏 =

(𝑏1 … 𝑏𝐼) ∈ 𝑅𝐼
+. We assume the period to be denoted as t = 1, 2,...,T and each city 

to be denoted as k = 1, 2,...,K. Therefore, the input and output values of city k at 

period t can be denoted as (𝑥𝑘,𝑡，𝑦𝑘,𝑡，𝑏𝑘,𝑡) 

Following Chung et al. (1997), the production possibility set is calculated as 

follows: 

(4)   𝑃𝑡(𝑥𝑡) = {(𝑦𝑡，𝑏𝑡)：∑ 𝑤𝑘
𝑡𝑦𝑘𝑚

𝑡𝐾
𝑘=1 ≥ 𝑦𝑘𝑚

𝑡 ，∀𝑚；∑ 𝑤𝑘
𝑡𝑏𝑘𝑖

𝑡𝐾
𝑘=1 = 𝑏𝑘𝑖

𝑡 , ∀𝑖; 

         ∑ 𝑤𝑘
𝑡𝑥𝑘𝑚

𝑡𝐾
𝑘=1 ≤ 𝑥𝑘𝑛

𝑡 , ∀𝑛; ∑ 𝑤𝑘
𝑡𝐾

𝑘=1 = 1, 𝑤𝑘
𝑡 > 0, ∀𝑘 

where 𝑤𝑘
𝑡 represents the weight of each cross-sectional observation, and 

∑ 𝑤𝑘
𝑡𝐾

𝑘=1 = 1  and 𝑤𝑘
𝑡 > 0  indicate variable returns to scale (VRS) in the 

production technology. To calculate the GML index, following Oh (2010), 𝑃𝑡(𝑥𝑡) 

is replaced by the global production possibility set 𝑃𝐺(𝑥) as follows: 

(5)           𝑃𝐺(𝑥) = {(𝑦𝑡, 𝑏𝑡): ∑ ∑ 𝑤𝑘
𝑡𝑏𝑘𝑖

𝑡𝐾
𝑘=1

𝑇
𝑡=1 = 𝑏𝑘𝑖

𝑡 , ∀𝑖; 

         ∑ ∑ 𝑤𝑘
𝑡𝑥𝑘𝑛

𝑡𝐾
𝑘=1

𝑇
𝑡=1 ≤ 𝑥𝑘𝑛

𝑡 , ∑ 𝑤𝑘
𝑡𝐾

𝑘=1 = 1, 𝑤𝑘
𝑡 ≥ 0, ∀𝑘} 

Global SBM directional distance function: Following Fukuyama and Weber 

(2009), this function is defined as follows: 

(6)  𝑆𝑉
𝐺(𝑥𝑡,𝑘𝑡

, 𝑦𝑡,𝑘𝑡
, 𝑏𝑡,𝑘𝑡

, 𝑔𝑥, 𝑔𝑦, 𝑔𝑏) = 𝑚𝑎𝑥𝑠𝑥,𝑠𝑦,𝑠𝑏

1

𝑁
∑

𝑠𝑛
𝑥

𝑔𝑛
𝑥

𝑁
𝑛=1 +

1

𝑀+1
(∑

𝑠𝑚
𝑦

𝑔𝑚
𝑦 +∑

𝑠𝑖
𝑏

𝑔𝑖
𝑏)𝐼

𝑖=1
𝑀
𝑚=1

2
 

𝑠. 𝑡. ∑ ∑ 𝑤𝑘
𝑡𝑥𝑘𝑛

𝑡 + 𝑠𝑛
𝑥 = 𝑥𝑘′𝑛

𝑡𝐾
𝑘=1

𝑇
𝑡=1 , ∀𝑛; ∑ ∑ 𝑤𝑘

𝑡𝑦𝑘𝑚
𝑡 − 𝑠𝑚

𝑦
= 𝑦𝑘′𝑚

𝑡𝐾
𝑘=1

𝑇
𝑡=1 , ∀𝑚;  
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            ∑ ∑ 𝑤𝑘
𝑡𝑏𝑘𝑖

𝑡 + 𝑠𝑖
𝑏 = 𝑏𝑘′𝑖

𝑡𝐾
𝑘=1

𝑇
𝑡=1 , ∀𝑖 

  ∑ 𝑤𝑘
𝑡𝐾

𝑘=1 = 1, 𝑤𝑘
𝑡 ≥ 0, ∀𝑘; 𝑠𝑛

𝑥 ≥ 0, ∀𝑛; 𝑠𝑚
𝑦

≥ 0, ∀𝑚; 𝑠𝑖
𝑏 ≥ 0, ∀𝑖 

Here, 𝑥𝑡,𝑘𝑡
, 𝑦𝑡,𝑘𝑡

, and 𝑏𝑡,𝑘𝑡
 represent the input, good output, and bad output 

vectors for period t and city k, respectively; 𝑔𝑥, 𝑔𝑦, and 𝑔𝑏 represent the direction 

vectors for input reduction, good output increase, and bad output reduction, 

respectively; and 𝑠𝑛
𝑥 ,  𝑠𝑚

𝑦
, and 𝑠𝑖

𝑏  represent the slack vectors for inputs, good 

outputs, and bad outputs, respectively. 

GML index in reference to Oh (2010): The GML index based on the SBM 

directional distance function is calculated as follows: 

(7)                   𝐺𝑀𝐿𝑡
𝑡+1 =

1+𝑆𝑉
𝐺(𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑔)

1+𝑆𝑉
𝐺(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑔)

 

The 𝐺𝑀𝐿𝑡
𝑡+1 index bein equal to 1, greater than 1, or less than 1 indicates that the 

CTFP remains unchanged, increases, or decreases from period t to t+1, respectively. 

The 𝐺𝑀𝐿𝑡
𝑡+1 index can be further decomposed into the product of a low-carbon 

technology efficiency index and a low-carbon technology change index, which are 

denoted as 𝐶𝐸𝐶𝑡
𝑡+1 and 𝐶𝑇𝐶𝑡

𝑡+1, respectively. Their decomposition is presented 

as follows: 

(8)                    𝐺𝑀𝐿𝑡
𝑡+1 = 𝐺𝐸𝐶𝑡

𝑡+1 × 𝐺𝑇𝐶𝑡
𝑡+1    

(9)                   𝐶𝐸𝐶𝑡
𝑡+1 =

1+𝑆𝑉
𝑡 (𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑔)

1+𝑆𝑉
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑔)

  

(10)           𝐶𝑇𝐶𝑡
𝑡+1 =

1+𝑆𝑉
𝐺(𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑔)/1+𝑆𝑉

𝑡 (𝑥𝑡,𝑦𝑡,𝑏𝑡;𝑔)

1+𝑆𝑉
𝐺(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑔)/1+𝑆𝑉

𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑏𝑡+1;𝑔)
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𝐶𝐸𝐶𝑡
𝑡+1and 𝐶𝑇𝐶𝑡

𝑡+1 indices greater than 1 indicate efficiency improvement and 

technological progress from period t to t+1. When the indices are less than 1, this 

signifies a decline in efficiency and technological regression from period t to t+1. 

Inputs and outputs: We select the following inputs and outputs for measuring 

CTFP: The desirable output is represented by the real gross domestic product (GDP) 

at 2007 constant prices, while the undesirable output is represented by CO2 

emissions. Capital input is represented by the logarithm of the capital stock, which 

is calculated using the perpetual inventory method, while labor input is represented 

by the logarithm of the total number of employees. Considering the availability of 

data, energy input is represented by industrial electricity consumption. 

Mediating variables—Green technological innovation is represented by the 

number of green technology innovation patents (Pergreenpat) and the quality of 

green technology innovation (Pergreeninv), where Pergreenpat and Pergreeninv 

are represented by the number of green patent applications and number of green 

invention applications per 10,000 people, respectively. Industrial structure 

upgrading is represented by industrial structural rationalization (struc), which is 

measured using the Theil index. Lastly, resource allocation (ra) is measured by the 

level of regional scientific and technological expenditures. 

Control variables—The control variables are as follows: population size (lnpop, 

measured by the logarithm of urban population), economic development level 

(lnpgdp, measured by the logarithm of real per capita GDP), industrial structure (is, 

measured by the proportion of value added from the secondary industry to GDP), 

urbanization (urban, represented by the proportion of the nonagricultural 

population among the total population), energy consumption structure (es, 

represented by the ratio of coal consumption to total energy consumption), level of 

opening up (open, measured by the proportion of total imports and exports to GDP), 
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and R&D investment (rd, measured by the ratio of regional R&D expenditure to 

GDP). 

Data—CO2 emissions data are obtained from the CEADs database, while data 

for other variables are sourced from the China City Statistical Yearbook, the China 

Energy Statistical Yearbook, and the China Population and Employment Statistical 

Yearbook. Thus, balanced panel data for 182 prefecture-level cities from 2007 to 

2018 are obtained.  

TABLE 1— DESCRIPTIVE STATISTICS 

Variable Obs Mean Std. Dev. Min Max 

CTFP 2184 1.019 0.311 0.063 11.256 

lnpop 2184 5.815 0.673 2.898 7.138 

lnpgdp 2184 10.44 0.643 4.595 12.46 

is 2184 50.05 9.898 17.72 90.97 

urban 2184 32.68 21.95 4.350 100.0 

es 2184 0.094 0.139 0.005 4.176 

open 2184 16.89 35.58 0.001 813.4 

rd 2184 0.004 0.007 0.001 0.134 

 

Ⅴ Empirical Results 

This section discusses empirical results, including baseline regression results, 

machine learning–based PSM-DID regression results, parallel trend test, placebo 

test, mechanism analysis and heterogeneity analysis.  

A. Baseline regression results 

From Models (1) and (2) in Table 2, the coefficients of treat × post (did) are 

significantly positive at the 1% level. This indicates that SCC can significantly 

enhance CTFP, thus confirming H1. According to H1, SCC boosts productivity 

growth and inhibits carbon emissions, thereby improving CTFP. Regarding the 
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decomposition term, SCC significantly enhances CEC, while its impact on CTC is 

nonsignificant. The results indicate that the positive impact of SCC on CTFP is 

mainly due to it promoting low-carbon technological efficiency rather than low-

carbon technological progress. 

TABLE 2 — MULTI-PERIOD DID REGRESSION RESULTS 

 (1) (2) (3) (4) 

 CTFP CTFP CEC CTC 

did 0.073*** 0.159*** 0.195*** 0.010 

 (4.452) (6.313) (5.679) (0.819) 

lnpop  0.010 −0.184 0.143** 

  (0.106) (−1.342) (2.307) 

lnpgdp  0.026 −0.013 0.008 

  (0.901) (−0.239) (0.431) 

is  −0.001 −0.005* 0.004*** 

  (−0.674) (−1.897) (3.168) 

urban  0.000 0.002* −0.000 

  (0.641) (1.812) (−1.299) 

es  0.010 0.029 −0.006 

  (0.333) (0.620) (−0.219) 

open  0.000*** 0.000* −0.000 

  (2.910) (1.797) (−0.380) 

rd  0.707 0.187 0.754 

  (0.712) (0.154) (1.302) 

_cons 1.004*** 0.686 2.400** −0.085 

 (134.652) (0.959) (2.317) (−0.188) 

Adj. R-squared 0.0086 0.1371 0.0625 0.3478 

Urban-fixed effects Yes Yes Yes Yes 

Year-fixed effects Yes Yes Yes Yes 

N 2,184 2,184 2,184 2,184 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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B. Machine learning–based PSM-DID regression results 

Generally, propensity-score estimation uses logistic regression (LR). The use of 

LR to estimate propensity scores and achieve covariate balance typically involves 

an iterative process through the addition of interaction terms and nonlinear 

transformations of explanatory variables until an acceptable covariate balance is 

achieved (Lee et al., 2009). However, this process does not guarantee an improved 

covariate balance. Therefore, this study adopts a machine learning approach for 

PSM, which effectively captures nonlinear patterns and automatically selects 

features with the most significant impact on the results; thus, this approach avoids 

the manual feature selection process. This enables relationships to be more 

accurately captured between features and potential nonlinear relationships and 

interactions to be identified (Whata & Chimedza, 2022); thus, more precise 

matching results can be provided. The results are presented in Figure 2: 

 

FIGURE 2 MACHINE LEARNING PSM RESULTS 
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Propensity scores are obtained using the random forest algorithm, and then 

machine learning models are trained and predicted. Thus, a highly matched 

combination between the treatment and control groups is achieved. Based on this, 

a regression analysis is conducted, the results of which are presented in Table 3:  

TABLE 3 —MACHINE LEARNING PSM-DID REGRESSION RESULTS 

 (1) (2) (3) 

 CTFP CEC CTC 

did 0.188*** 0.202*** 0.048 

 (4.280) (2.650) (1.115) 

_cons 0.649 3.322 −0.358 

 (0.473) (1.501) (−0.238) 

Adj R-squared 0.2577 0.1921 0.4005 

Urban-fixed effects Yes Yes Yes 

Year-fixed effects Yes Yes Yes 

N 400 400 400 

Note: The estimated results of control variables are shown in the Table A1 of Appendix A. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

In PSM, the use of machine learning algorithms offers stronger modeling 

capabilities, automatic feature selection, fault tolerance, and robustness. With a 

higher matching quality achieved after we train the machine learning model, the 

coefficient of variation is 0.188, significant at the 1% level. This indicates that 

smart cities can indeed enhance CTFP. 

C. Parallel trend test 

Before we implement smart city pilot policies, the changes in CTFP between pilot 

cities and nonpilot cities should be similar. Therefore, it is necessary to verify the 

existence of parallel trends in CTFP. The test results are presented in Figure 3: 



20 

 

FIGURE 3 PARALLEL TREND TEST RESULTS 

 

According to Figure 3, before the implementation of smart city policies, the 

values of CTFP were distributed around zero and were nonsignificant. This 

indicates that the treatment and control groups exhibited similar growth trends in 

CTFP. After the policy implementation, the effects of relevant policies do not 

exhibit immediate significance but rather a certain lag. Approximately 2 years after 

the policy’s implementation, both the treatment group and the control group 

experience significant changes and an increase in CTFP. 

D. Placebo test 

To examine whether the regression results are influenced by random factors and 

omitted variables as well as to avoid the impact of unobservable factors on the 

baseline regression analysis, this study randomly selects new cities as the treatment 

group and conducts placebo tests. Randomly selected cities from the sample are 

used to represent a fictitious treatment group, and then a regression is performed 

again. This process is repeated 1,000 times, resulting in 1,000 regression 
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coefficients and assumed values. The kernel density distribution and t values are 

depicted in Figure 4.  

The mean of the coefficients is close to 0, which aligns with the expectations of 

the placebo test. Therefore, the estimation results are not biased due to omitted 

variables, which further validates the robustness of the baseline regression results. 

 

FIGURE 4 PLACEBO TEST RESULTS 

 

E. Mechanism analysis 

As described in Section 3.2, SCC influences CTFP by promoting green 

technological innovation, upgrading industrial structures, and improving resource 

allocation. These mechanisms are further examined in Table 4: 
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TABLE 4— MECHANISM TEST RESULTS 

 (1) (2) (3) (4) 

 pergreenpat pergreeninv struc ra 

did 0.719** 0.419** 0.046* 1.1e+05** 

 (2.522) (2.483) (1.875) (2.515) 

cons −8.103 −2.134 0.140 −6.2e+05 

 (−1.452) (−0.694) (0.185) (−0.553) 

Urban-fixed effects Yes Yes Yes Yes 

Year-fixed effects Yes Yes Yes Yes 

N 395 395 400 400 

Note: The estimated results of control variables are shown in the Table A2 of Appendix A. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

The coefficients of pergreenpat, pergreeninv, struc, and ra are significantly 

positive, indicating that SCC can enhance CTFP through promoting green 

technological innovation, upgrading industrial structure, and optimizing resource 

allocation. Thus, H2, H3, and H4 are validated. In other words, green technology 

innovation, industrial structure upgrading, and resource allocation are crucial 

channels through which SCC promotes CTFP. 

F. Heterogeneity analysis 

Heterogeneity in batches—The first, second, and third batches of smart city pilots 

in China were implemented in 2012, 2013, and 2014, respectively. To explore 

whether the CTFP promotion effects of different batches of smart city pilots have 

been homogeneous, this study proceeds to investigate the impacts of the three 

batches of SCC on CTFP. To ensure the reliability of the regression analysis, only 

other cities in the provinces where the treatment group smart cities are located are 

selected as the control group. Table 5 presents the regression results: 
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TABLE 5 —REGRESSION RESULTS OF DIFFERENT SCC BATCHES 

 2012 2013 2014 

 CTFP CTFP CTFP 

did 0.096*** 0.181*** 0.215*** 

 (3.059) (4.410) (5.851) 

R-squared 0.1204 0.1058 0.2422 

Urban-fixed effects Yes Yes Yes 

Year-fixed effects Yes Yes Yes 

N 1,500 1,260 912 

Note: The estimated results of control variables are shown in the Table A3 of Appendix A. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

According to Table 5, each batch of smart city pilots has significant positive 

effects on CTFP. The coefficients of did for the first, second, and third batches are 

0.096, 0.181, and 0.215, respectively, all of which are significant at the 1% level. 

This further confirms the positive effect of SCC on CTFP. Moreover, the third batch 

of smart city pilots has the largest positive impact on CTFP, followed by the second 

batch, while the first batch has the smallest impact. Compared with the first batch, 

the second and third batches of pilot smart cities have the advantage of being able 

to learn from the experience of other cities’ policy pilots, and they implement smart 

city policies more accurately based on their own comparative advantages. This can 

more effectively promote CTFP. 

Heterogeneity in location and urban scale—Due to the uneven development 

policies and diverse location conditions, significant regional disparities exist in 

low-carbon development in China (Figure 5). Therefore, regional heterogeneities 

may exist in the impact of SCC on CTFP. 



24 

  

FIGURE 5 CTFP IN 2007 AND 2018 IN CHINA 

 

First, cities are divided into the following three regional groups: the Eastern, 

Central, and Western regions. Then, regressions are conducted to examine the 

regional heterogeneity in the influence of SCC on CTFP. Columns 1–3 in Table 6 

present the results: 

TABLE 6— HETEROGENEITY REGRESSION RESULTS 

 Urban Location Heterogeneity Urban Scale Heterogeneity 

 Eastern Central Western Megacities Other Cities 

 (1) (2) (3) (4) (5) 

 CTFP CTFP CTFP CTFP CTFP 

did 0.156*** 0.192*** 0.167* 0.185*** 0.106** 

 (3.864) (5.858) (1.731) (6.144) (2.514) 

Urban-fixed effects Yes Yes Yes Yes Yes 

Year-fixed effects Yes Yes Yes Yes Yes 

N 912 864 408 1,740 444 

Note: The estimated results of control variables are shown in the Table A4 of Appendix A. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

In the samples from the Eastern, Central, and Western regions, the coefficients 

of variation are 0.156, 0.192, and 0.167, respectively, all of which are significant 

at the 1%, 1%, and 10% levels. Therefore, SCC can promote CTFP in China’s three 
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major regions. Moreover, the effect of SCC is most significant in the Central region. 

This may be due to the fact that the Central region benefits from knowledge 

spillovers and industrial migration from Eastern cities, enabling it to improve CTFP 

more effectively through SCC. While an increase is found to have occurred in the 

level of innovation in the Eastern region (Wang & Deng, 2022), due to diminishing 

marginal returns, the positive impact of SCC on CTFP in said region is relatively 

smaller. The Western region has clearer latecomer advantages, and the cost and risk 

of SCC are lower; thus, a significant improvement in CTFP is achieved.  

Second, the economic and environmental effects of SCC vary by city size. 

Therefore, this study classifies cities with a population of over 2 million as 

megacities and those below 2 million as Other cities before performing grouped 

regressions (Columns 4–5 in Table 6). 

The coefficient of did for the megacities is 0.185, which is significant at the 1% 

level, while the coefficient of did for the Other cities is 0.106, which is significant 

at the 5% level. This suggests that the impact of SCC on CTFP is more pronounced 

in megacities. The reason could be that the SCC in megacities reflects more 

prominent knowledge and technological spillover effects, which contribute to 

CTFP growth.  

Ⅵ Conclusion and Implications 

A. Conclusion 

In this era of low-carbon development and the prevalence of smart city pilots, it 

is necessary to identify the impact of SCC on low-carbon development. However, 

little is known about the causal relationship between SCC and CTFP. This study 

employed multi-period DID and machine learning PSM-DID methods to 

empirically investigate the impacts of SCC on CTFP in Chinese cities. The key 

findings are as follows: 
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First, SCC was found to have significantly increased CTFP and low-carbon 

technological efficiency; however, its impact on low-carbon technological progress 

is nonsignificant. 

Second, mechanism tests indicated that SCC enhances CTFP by promoting green 

technological innovation, upgrading industrial structure, and optimizing resource 

allocation.  

Third, heterogeneity tests demonstrate that all three batches of SCC promote 

CTFP, and the promotion effect of the third batch is larger than that of the first and 

second batches. Moreover, the positive impact of SCC on CTFP is more significant 

in the Central region and megacities. 

B. Policy implications 

Based on the abovementioned conclusions, the following policy implications are 

proposed: 

First, importance should be attached to the vital role of the pilot smart city policy 

in promoting low-carbon development. Furthermore, ICT technologies such as big 

data and cloud computing should be used to monitor possible energy and carbon 

emission problems in the city in real time, accelerate the digital transformation and 

low-carbon transformation of enterprises, and strengthen the CTFP promotion 

effect of smart cities. 

Second, smart cities’ role in driving technological innovation should be promoted, 

resource allocation should be optimized, the industrial structure should be upgraded, 

technological efficiency should be improved, a favorable market environment 

should be created, and the channels for smart cities to improve CTFP should be 

smoothed. 

Finally, SCC must be adapted to local conditions. The Eastern regions and 

megacities of China should leverage their strong economic foundation to assume a 
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leading role in the construction of smart cities. Furthermore, the Central regions 

should fully utilize their favorable geographical advantages and absorb the 

experience of SCC in the East. Moreover, Western regions can fully strengthen the 

positive effect of SCC on CTFP through special government transfer payments. 
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APPENDIX 

TABLE A1 MACHINE LEARNING PSM-DID REGRESSION RESULTS: CONTROL VARIABLES 

 (1) (2) (3) 

 CTFP CEC CTC 

did 0.188*** 0.202*** 0.048 

 (4.280) (2.650) (1.115) 

lnpop −0.042 −0.400 0.156 

 (−0.185) (−1.087) (0.627) 

lnpgdp 0.059** 0.011 0.049** 

 (2.551) (0.388) (2.579) 

is −0.000 −0.000 −0.002 

 (−0.074) (−0.029) (−0.626) 

urban −0.000 −0.003 0.001 

 (−0.381) (−1.349) (0.518) 

es −0.163 −0.006 −0.078 

 (−0.921) (-0.022) (−0.396) 

open 0.000 −0.001 0.001 

 (0.350) (−0.323) (1.298) 

rd 0.171 5.414 −4.229 

 (0.054) (1.226) (−1.431) 

_cons 0.649 3.322 −0.358 

 (0.473) (1.501) (−0.238) 

Adj R-squared 0.2577 0.1921 0.4005 

Urban fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

N 400 400 400 

Note: This table is a continuation of Table 3. 
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*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 

 

TABLE A2 MECHANISM TEST RESULTS：CONTROL VARIABLES 

 (1) (2) (3) (4) 

 pergreenpat pergreeninv struc ra 

did 0.719** 0.419** 0.046* 1.1e+05** 

 (2.522) (2.483) (1.875) (2.515) 

lnpop 1.520 0.384 0.053 1.1e+05 

 (1.588) (0.745) (0.444) (0.558) 

lnpgdp 0.109 0.063 −0.011 2.8e+04 

 (0.943) (0.947) (−0.926) (1.167) 

is −0.019** −0.007 −0.000 192.773 

 (−1.996) (−1.231) (−0.151) (0.092) 

urban 0.004 0.002 −0.000 926.845 

 (0.970) (1.030) (−0.605) (0.994) 

es −1.129 −0.586 −0.125 2.3e+04 

 (−1.295) (−1.285) (−0.897) (0.128) 

open −0.023*** −0.013*** 0.000 284.249 

 (−3.223) (−3.070) (0.480) (0.337) 

rd 25.534 13.044 −1.372 −3.0e+06* 

 (1.067) (0.824) (−1.191) (-1.719) 

_cons −8.103 −2.134 0.140 −6.2e+05 

 (−1.452) (−0.694) (0.185) (−0.553) 

Adj R-squared 0.7610 0.6852 0.8792 0.8079 

Urban fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes 

N 395 395 400 400 

Note: This table is a continuation of Table 4. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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TABLE A3 REGRESSION RESULTS OF DIFFERENT SCC BATCHES：CONTROL VARIABLES 

 2012 2013 2014 

 CTFP CTFP CTFP 

did 0.096*** 0.181*** 0.215*** 

 (3.059) (4.410) (5.851) 

lnpop 0.087 −0.051 0.507*** 

 (0.999) (−0.313) (4.261) 

lnpgdp 0.038** 0.027 0.330*** 

 (2.052) (0.921) (5.097) 

is −0.002 −0.000 −0.004** 

 (−0.829) (−0.237) (−2.466) 

urban 0.000 −0.001* −0.000 

 (0.795) (−1.752) (−0.467) 

es 0.011 0.015 0.086 

 (0.070) (0.524) (0.807) 

open 0.000*** 0.002 0.003** 

 (4.282) (0.917) (2.356) 

rd 0.694 2.940** 3.824*** 

 (0.614) (2.414) (3.485) 

_cons 0.161 1.023 −5.243*** 

 (0.289) (0.955) (−5.247) 

Adj R-squared 0.1204 0.1058 0.2422 

Urban fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

N 1500 1260 912 

Note: This table is a continuation of Table 5. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 
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TABLE A4  HETEROGENEITY REGRESSION RESULTS: CONTROL VARIABLES 

 Urban Location Heterogeneity 
Urban Scale 

Heterogeneity 

 Eastern Central Western Megacities Other Cities 

 (1) (2) (3) (4) (5) 

 CTFP CTFP CTFP CTFP CTFP 

did 0.156*** 0.192*** 0.167* 0.185*** 0.106** 

 (3.864) (5.858) (1.731) (6.144) (2.514) 

lnpop −0.944** 0.051 −0.021 −0.045 −0.021 

 (−2.317) (0.348) (−0.069) (−0.284) (−0.204) 

lnpgdp 0.087 0.002 0.079** 0.028 −0.046 

 (1.380) (0.010) (2.056) (0.934) (−0.662) 

is 0.003 0.002 −0.003 −0.002 0.003 

 (1.016) (0.636) (−1.076) (−1.069) (1.215) 

urban 0.000 0.000 −0.004** 0.000 −0.000 

 (0.011) (0.079) (−2.122) (0.439) (−0.097) 

es 0.091 0.096 −0.035 0.119 −0.034 

 (0.572) (0.290) (−1.074) (1.317) (−1.106) 

open 0.000*** −0.001 −0.001 0.000*** −0.001 

 (3.399) (−1.175) (−0.227) (3.283) (−1.608) 

rd 1.644 −1.030 0.838 0.098 5.432** 

 (1.328) (−0.670) (0.416) (0.101) (2.639) 

_cons 5.516** 0.565 0.631 1.031 1.439 

 (2.442) (0.257) (0.347) (0.924) (1.389) 

Adj R-squared 0.3063 0.2431 0.0209 0.1317 0.1859 

Urban fixed effects Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 

N 912 864 408 1740 444 

Note: This table is a continuation of Table 6. 

*** Significant at the 1 percent level.  

** Significant at the 5 percent level. 

* Significant at the 10 percent level. 


